

BIG DATA ANALYTICS

LAB MANUAL (R22A0590)

IV B.TECH I SEMESTER

Prepared By:

R. Chandra Shekhar

Associate Professor

DEPARTMENT

OF

COMPUTER SCIENCE & INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous institution –UGC , Govt of India)

Affiliated to JNTUH & Approved by AICTE,New Delhi

2025-2026

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

VISION

 To achieve high quality in technical education that provides the skills and attitude to adapt to

the global needs of the Information Technology sector, through academic and research

excellence.

MISSION

 To equip the students with the cognizance for problem solving and to improve the teaching

learning pedagogy by using innovative techniques.

 To strengthen the knowledge base of the faculty and students with motivation towards

possession of effective academic skills and relevant research experience.

 To promote the necessary moral and ethical values among the engineers, for the betterment

of the society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1 – ANALYTICAL SKILLS

 To facilitate the graduates with the ability to visualize, gather

information, articulate, analyze, solve complex problems, and

make decisions. These are essential to address the challenges of

complex and computation intensive problems increasing their

productivity.

PEO2 – TECHNICAL SKILLS

 To facilitate the graduates with the technical skills that prepare

them for immediate employment and pursue certification providing

a deeper understanding of the technology in advanced areas of

computer science and related fields, thus encouraging to pursue

higher education and research based on their interest.

PEO3 – SOFT SKILLS

 To facilitate the graduates with the soft skills that include fulfilling

the mission, setting goals, showing self-confidence by

communicating effectively, having a positive attitude, get involved

in team-work, being a leader, managing their career and their life.

PEO4 – PROFESSIONAL ETHICS
 To facilitate the graduates with the knowledge of professional and

ethical responsibilities by paying attention to grooming, being

conservative with style, following dress codes, safety codes, and

adapting themselves to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech Information Technology, the graduates will have the

following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System: Able to understand the

working principles of the computer System and its components, Apply the knowledge to

build, asses, and analyze the software and hardware aspects of it.

2. The comprehensive and applicative knowledge of Software Development:

Comprehensive skills of Programming Languages, Software process models,

methodologies, and able to plan, develop, test, analyze, and manage the software and

hardware intensive systems in heterogeneous platforms individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional,

managerial, interdisciplinary skill set, and domain specific tools in development processes,

identify the research gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multi-disciplinary environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to the starting time),

those who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab with the

synopsis / program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim, Algorithm,

Procedure, Program, Expected Output, etc.,) filled in for the lab session.

b. Laboratory Record updated up to the last session experiments and other utensils (if any) needed

in the lab.

c. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system

allotted to you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab observation note

book, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the

discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high-end branded systems, which should

be utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab

sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will attract

severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out; if anybody

found loitering outside the lab / class without permission during working hours will be treated

seriously and punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab

after completing the task (experiment) in all aspects. He/she must ensure the system / seat is

kept properly.

HEAD OF THE DEPARTMENT PRINCIPAL

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

IV Year B.TECH -CSIT-I-SEM L/T/P/C

-/0/2/1

(R22A0590) BIG DATA ANALYTICS LAB

COURSE OBJECTIVES:

The objectives of this course are

1. To implement MapReduce programs for processing big data.

2. To realize storage of big data using MongoDB.
3. To analyze big data using machine learning techniques such as Decision

tree classification and clustering.

List of Experiments

1. Install, configure and run python, numPy and Pandas.

2. Install, configure and run Hadoop and HDFS.

3. Visualize data using basic plotting techniques in Python.

4. Implement NoSQL Database Operations: CRUD operations, Arrays using MongoDB.

5. Implement Functions: Count – Sort – Limit – Skip – Aggregate using MongoDB.

6. Implement word count / frequency programs using MapReduce.

7. Implement a MapReduce program that processes a dataset.

8. Implement clustering techniques using SPARK.

9. Implement an application that stores big data in MongoDB / Pig using Hadoop / R.

Course Outcomes:

On successful completion of the course, students will be able to,

1. Understand Configuration of various big data Frame Works.

2. Apply various visualization techniques to explore data.

3. Demonstrate data base operations using MongoDB.

4. Process big data using Hadoop framework.

5. Build and apply Map-Reduce & NoSQL Concepts.

6. Perform data analysis with machine learning methods.

BIG DATA ANALYTICS LAB

Table of Contents

S.No Name of the Experiment Page No.

1. Install, configure and run python, numPy and Pandas. 1

2. Install, configure and run Hadoop and HDFS. 19

3. Visualize data using basic plotting techniques in Python. 35

4.
Implement NoSQL Database Operations: CRUD operations,
Arrays using MongoDB.

43

5.
Implement Functions: Count – Sort – Limit – Skip – Aggregate
using MongoDB. 52

6. Implement word count / frequency programs using MapReduce. 62

7. Implement a MapReduce program that processes a dataset. 66

8. Implement clustering techniques using SPARK. 70

9.
Implement an application that stores big data in MongoDB / Pig

using Hadoop / R.
75

BIG DATA ANALYTICS LAB 2025-2026

Page 1 Department of CSIT

EXPERIMENT: 1

Install, configure and run python, numpy and pandas.

PROGRAM:

AIM: To Installing and Running Applications On python, numpy and pandas.

How to Install Anaconda on Windows?

Anaconda is an open-source software that contains Jupyter, spyder, etc that are used for large data

processing, data analytics, heavy scientific computing. Anaconda works for R and python

programming language. Spyder(sub-application of Anaconda) is used for python. Opencv for python

will work in spyder. Package versions are managed by the package management system called

conda.

To begin working with Anaconda, one must get it installed first. Follow the below instructions to

Download and install Anaconda on your system:

Download and install Anaconda:

Head over to anaconda.com and install the latest version of Anaconda. Make sure to download the

“Python 3.7 Version” for the appropriate architecture.

Begin with the installation process:

 Getting Started

BIG DATA ANALYTICS LAB 2025-2026

Page 2 Department of CSIT

Getting through the License Agreement:

Select Installation Type: Select Just Me if you want the software to be used by a single User

BIG DATA ANALYTICS LAB 2025-2026

Page 3 Department of CSIT

Choose Installation Location:

Advanced Installation Option:

BIG DATA ANALYTICS LAB 2025-2026

Page 4 Department of CSIT

Getting through the Installation Process:

Recommendation to Install Pycharm:

BIG DATA ANALYTICS LAB 2025-2026

Page 5 Department of CSIT

Finishing up the Installation:

Working with Anaconda:

Once the installation process is done, Anaconda can be used to perform multiple operations. To

Begin using anaconda search for anaconda navigator from the start menu in windows.

BIG DATA ANALYTICS LAB 2025-2026

Page 6 Department of CSIT

#import pandas in jupyter notebook

import pandas

#loading the dataset which is excel file

dataset = pandas.read_csv("crime.csv")

#displaying the data

dataset

import pandas as pd

dataset1 = pd.read_csv("crime.csv")

dataset1

BIG DATA ANALYTICS LAB 2025-2026

Page 7 Department of CSIT

dataset1.head()

dataset1.tail()

BIG DATA ANALYTICS LAB 2025-2026

Page 8 Department of CSIT

dataset1.head(10)

dataset1.tail(10)

type(dataset1)

pandas.core.frame.DataFrame

#to find any null values in the last 5 rows

dataset1.isnull().tail()

#to makesure that no null values exists

dataset1.notnull().tail()

BIG DATA ANALYTICS LAB 2025-2026

Page 9 Department of CSIT

#displays the number of null values in each column

dataset1.isnull().sum()

#helps to find null values with respect to ROBBERY column

dataset1[dataset1.Robbery.isnull()]

dataset1.shape

#helps to find how many times values in a particular column has repeated

dataset1['Robbery'].value_counts()

#consolidated value counts for all the columns in the dataset

for col in dataset1.columns:

display(dataset1[col].value_counts())

BIG DATA ANALYTICS LAB 2025-2026

Page 10 Department of CSIT

#helps to find number of rows in the dataset

dataset_length=len(dataset1)

dataset_length

#helps to find number of columns in the dataset

dataset_col=len(dataset1.columns)

dataset_col

#helps to find the summary of numerical columns

dataset1.describe()

#helps to describe individual column

dataset1.Murder.describe()

dataset1.skew()

BIG DATA ANALYTICS LAB 2025-2026

Page 11 Department of CSIT

dataset1.var()

dataset1.kurtosis()

print(dataset1.dtypes)

NUMPY

Numpy is the core library for scientific and numerical computing in Python. It provides high

performance multi dimensional array object and tools for working with arrays.

Numpy main object is the multidimensional array, it is a table of elements (usually numbers) all of

the same type indexed by a positive integers.

BIG DATA ANALYTICS LAB 2025-2026

Page 12 Department of CSIT

In Numpy dimensions are called as axes.

Numpy is fast, convenient and occupies less memory when compared to python list.

import numpy

arr = numpy.array([1, 2, 3, 4, 5])

print(arr)

NumPy is usually imported under the np alias.

import numpy as np

Now the NumPy package can be referred to as np instead of numpy.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

Checking NumPy Version

The version string is stored under version attribute.

import numpy as np

print(np. version)

Create a NumPy ndarray Object

NumPy is used to work with arrays. The array object in NumPy is called ndarray.

We can create a NumPy ndarray object by using the array() function.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

print(type(arr))

type(): This built-in Python function tells us the type of the object passed to it. Like in above

code it shows that arr is numpy.ndarray type.

To create an ndarray, we can pass a list, tuple or any array-like object into the array() method, and it

will be converted into an ndarray:

Use a tuple to create a NumPy array:

import numpy as np

arr = np.array((1, 2, 3, 4, 5))

print(arr)

Dimensions in Arrays

A dimension in arrays is one level of array depth (nested arrays).

BIG DATA ANALYTICS LAB 2025-2026

Page 13 Department of CSIT

nested array: are arrays that have arrays as their elements.

0-D Arrays

0-D arrays, or Scalars, are the elements in an array. Each value in an array is a 0-D array.

#Create a 0-D array with value 42

import numpy as np

arr = np.array(42)

print(arr)

1-D Arrays

These are the most common and basic arrays.

#Create a 1-D array containing the values 1,2,3,4,5:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

2-D Arrays

An array that has 1-D arrays as its elements is called a 2-D array.

These are often used to represent matrix or 2nd order tensors.

#Create a 2-D array containing two arrays with the values 1,2,3 and 4,5,6:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

print(arr)

3-D arrays

An array that has 2-D arrays (matrices) as its elements is called 3-D array.

These are often used to represent a 3rd order tensor.

#Create a 3-D array with two 2-D arrays, both containing two arrays with the values 1,2,3 and 4,5,6:

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])

print(arr)

Check Number of Dimensions?

NumPy Arrays provides the ndim attribute that returns an integer that tells us how many dimensions

the array have.

BIG DATA ANALYTICS LAB 2025-2026

Page 14 Department of CSIT

#Check how many dimensions the arrays have:

import numpy as np

a = np.array(42)

b = np.array([1, 2, 3, 4, 5])

c = np.array([[1, 2, 3], [4, 5, 6]])

d = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])

print(a.ndim)

print(b.ndim)

print(c.ndim)

print(d.ndim)

#Create an array with 5 dimensions and verify that it has 5 dimensions:

import numpy as np

arr = np.array([1, 2, 3, 4], ndmin=5)

print(arr)

print('number of dimensions :', arr.ndim)

NumPy Array Indexing

Access Array Elements

Array indexing is the same as accessing an array element.
You can access an array element by referring to its index number.

The indexes in NumPy arrays start with 0, meaning that the first element has index 0, and the second

has index 1 etc.

#Get the first element from the following array:

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[0])

#Get the second element from the following array.

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[1])

#Get third and fourth elements from the following array and add them.

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[2] + arr[3])

BIG DATA ANALYTICS LAB 2025-2026

Page 15 Department of CSIT

Access 2-D Arrays
To access elements from 2-D arrays we can use comma separated integers representing the dimension and
the index of the element.
Think of 2-D arrays like a table with rows and columns, where the dimension represents the row and the
index represents the column.

#Access the element on the first row, second column:
import numpy as np
arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print('2nd element on 1st row: ', arr[0, 1])

#Access the element on the 2nd row, 5th column:
import numpy as np
arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print('5th element on 2nd row: ', arr[1, 4])

OUTPUT:

BIG DATA ANALYTICS LAB 2025-2026

Page 16 Department of CSIT

Record Notes

Signature of the Faculty

BIG DATA ANALYTICS LAB 2025-2026

Page 17 Department of CSIT

Signature of the Faculty

BIG DATA ANALYTICS LAB 2025-2026

Page 18 Department of CSIT

Signature of the Faculty

BIG DATA ANALYTICS LAB 2025-2026

Page 19 Department of CSIT

EXPERIMENT: 2
Install, Configure and Run Hadoop and HDFS

PROGRAM:

AIM: To Installing and Running Applications On Hadoop and HDFS.

HADOOP INSTALATION IN WINDOWS

1. Prerequisites

Hardware Requirement
* RAM — Min. 8GB, if you have SSD in your system then 4GB RAM would also work.

* CPU — Min. Quad core, with at least 1.80GHz

2. JRE 1.8 — Offline installer for JRE

3. Java Development Kit — 1.8

4. A Software for Un-Zipping like 7Zip or Win Rar

* I will be using a 64-bit windows for the process, please check and download the version supported

by your system x86 or x64 for all the software.

5. Download Hadoop zip

* I am using Hadoop-2.9.2, you can use any other STABLE version for hadoop.

Once we have Downloaded all the above software, we can proceed with next steps in installing the

Hadoop.

2. Unzip and Install Hadoop

After Downloading the Hadoop, we need to Unzip the hadoop-2.9.2.tar.gz file.

Once extracted, we would get a new file hadoop-2.9.2.tar.

BIG DATA ANALYTICS LAB 2025-2026

Page 20 Department of CSIT

Now, once again we need to extract this tar file.

Now we can organize our Hadoop installation, we can create a folder and move the final extracted

file in it. For Eg. :-

Please note while creating folders, DO NOT ADD SPACES IN BETWEEN THE FOLDER

NAME.(it can cause issues later)

I have placed my Hadoop in D: drive you can use C: or any other drive also.

3. Setting Up Environment Variables

Another important step in setting up a work environment is to set your Systems environment

variable.

To edit environment variables, go to Control Panel > System > click on the “Advanced system

settings” link

Alternatively, We can Right click on This PC icon and click on Properties and click on the

“Advanced system settings” link

Or, easiest way is to search for Environment Variable in search bar and there you GO…◻

BIG DATA ANALYTICS LAB 2025-2026

Page 21 Department of CSIT

BIG DATA ANALYTICS LAB 2025-2026

Page 22 Department of CSIT

3.1 Setting JAVA_HOME

Open environment Variable and click on “New” in “User Variable”

BIG DATA ANALYTICS LAB 2025-2026

Page 23 Department of CSIT

On clicking “New”, we get below screen.

Now as shown, add JAVA_HOME in variable name and path of Java(jdk) in Variable Value.

Click OK and we are half done with setting JAVA_HOME.

BIG DATA ANALYTICS LAB 2025-2026

Page 24 Department of CSIT

3.2 Setting HADOOP_HOME

Open environment Variable and click on “New” in “User Variable”

On clicking “New”, we get below screen.

Now as shown, add HADOOP_HOME in variable name and path of Hadoop folder in Variable

Value.

Click OK and we are half done with setting HADOOP_HOME.

Note:- If you want the path to be set for all users you need to select “New” from System Variables.

3.3 Setting Path Variable

Last step in setting Environment variable is setting Path in System Variable.

BIG DATA ANALYTICS LAB 2025-2026

Page 25 Department of CSIT

Select Path variable in the system variables and click on “Edit”.

Now we need to add these paths to Path Variable one by one:-

* %JAVA_HOME%\bin

* %HADOOP_HOME%\bin

* %HADOOP_HOME%\sbin

Click OK and OK. & we are done with Setting Environment Variables.

3.4 Verify the Paths

Now we need to verify that what we have done is correct and reflecting.

Open a NEW Command Window

Run following commands

echo %JAVA_HOME%
echo %HADOOP_HOME%

echo %PATH%

4. Editing Hadoop files

Once we have configured the environment variables next step is to configure Hadoop. It has 3 parts:-

4.1 Creating Folders

We need to create a folder data in the hadoop directory, and 2 sub folders namenode and datanode

BIG DATA ANALYTICS LAB 2025-2026

Page 26 Department of CSIT

Create DATA folder in the Hadoop directory

Once DATA folder is created, we need to create 2 new folders namely, namenode and datanode

inside the data folder

These folders are important because files on HDFS resides inside the datanode.

4.2 Editing Configuration Files

Now we need to edit the following config files in hadoop for configuring it :-

(We can find these files in Hadoop -> etc -> hadoop)

* core-site.xml

* hdfs-site.xml

* mapred-site.xml

* yarn-site.xml

* hadoop-env.cmd

4.2.1 Editing core-site.xml

Right click on the file, select edit and paste the following content within <configuration>
</configuration> tags.

Note:- Below part already has the configuration tag, we need to copy only the part inside it.

<configuration>

<property>

<name>fs.defaultFS</name>

<value>hdfs://localhost:9000</value>

</property>

</configuration>

4.2.2 Editing hdfs-site.xml

BIG DATA ANALYTICS LAB 2025-2026

Page 27 Department of CSIT

Right click on the file, select edit and paste the following content within

<configuration></configuration>tags.

Note:- Below part already has the configuration tag, we need to copy only the part inside it.

Also replace PATH~1 and PATH~2 with the path of namenode and datanode folder that we created

recently(step 4.1).

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>C:\hadoop\data\namenode</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>C:\hadoop\data\datanode</value>

</property>

</configuration>

4.2.3 Editing mapred-site.xml

Right click on the file, select edit and paste the following content within <configuration>
</configuration> tags.

Note:- Below part already has the configuration tag, we need to copy only the part inside it.

<configuration>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

</configuration>

4.2.4 Editing yarn-site.xml

Right click on the file, select edit and paste the following content within <configuration>
</configuration> tags.

Note:- Below part already has the configuration tag, we need to copy only the part inside it.

<configuration>

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

</property>

<property>

<name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>

<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>

</configuration>

4.2.5 Verifying hadoop-env.cmd

Right click on the file, select edit and check if the JAVA_HOME is set correctly or not.
We can replace the JAVA_HOME variable in the file with your actual JAVA_HOME that we

configured in the System Variable.

set JAVA_HOME=%JAVA_HOME%

OR

set JAVA_HOME="C:\Program Files\Java\jdk1.8.0_221"

4.3 Replacing bin

Last step in configuring the hadoop is to download and replace the bin folder.

BIG DATA ANALYTICS LAB 2025-2026

Page 28 Department of CSIT

* Go to this GitHub Repo and download the bin folder as a zip.

* Extract the zip and copy all the files present under bin folder to %HADOOP_HOME%\bin

Note:- If you are using different version of Hadoop then please search for its respective bin folder

and download it.

5. Testing Setup

Congratulation..!!!!!
We are done with the setting up the Hadoop in our System.

Now we need to check if everything works smoothly…

5.1 Formatting Namenode

Before starting hadoop we need to format the namenode for this we need to start a NEW Command

Prompt and run below command

hadoop namenode –format

Note:- This command formats all the data in namenode. So, its advisable to use only at the start and

do not use it every time while starting hadoop cluster to avoid data loss.

5.2 Launching Hadoop

Now we need to start a new Command Prompt remember to run it as administrator to avoid

permission issues and execute below commands

start-all.cmd

This will open 4 new cmd windows running 4 different Daemons of hadoop:-

* Namenode

* Datanode

* Resourcemanager

* Nodemanager

BIG DATA ANALYTICS LAB 2025-2026

Page 29 Department of CSIT

Note:- We can verify if all the daemons are up and running using jps command in new cmd window.

6. Running Hadoop (Verifying Web UIs)

6.1 Namenode

Open localhost:50070 in a browser tab to verify namenode health.

6.2 Resourcemanger

Open localhost:8088 in a browser tab to check resourcemanager details.

6.3 Datanode

Open localhost:50075 in a browser tab to checkout datanode.

BIG DATA ANALYTICS LAB 2025-2026

Page 30 Department of CSIT

OUTPUT:

BIG DATA ANALYTICS LAB 2025-2026

Page 31 Department of CSIT

Record Notes

BIG DATA ANALYTICS LAB 2025-2026

Page 32 Department of CSIT

Signature of the Faculty

BIG DATA ANALYTICS LAB 2025-2026

Page 33 Department of CSIT

Signature of the Faculty

BIG DATA ANALYTICS LAB 2025-2026

Page 34 Department of CSIT

Signature of the Faculty

BIG DATA ANALYTICS LAB 2025-2026

Page 35 Department of CSIT

EXPERIMENT: 3

Visualize Data Using Basic Plotting Techniques In Python.

PROGRAM:

AIM: To create an application that takes the Visualize Data Using Basic Plotting Techniques.

import pandas as pb

import matplotlib.pyplot as plt

import seaborn as sns

crime=pb.read_csv('crime.csv')

crime

plt.plot(crime.Murder,crime.Assault);

import seaborn as sns

BIG DATA ANALYTICS LAB 2025-2026

Page 36 Department of CSIT

sns.scatterplot(crime.Murder,crime.Assault);

sns.scatterplot(crime.Murder,crime.Assault,hue=crime.Murder,s=100);

plt.figure(figsize=(12,6))

plt.title('Murder Vs Assault')

sns.scatterplot(crime.Murder,crime.Assault,hue=crime.Murder,s=100);

BIG DATA ANALYTICS LAB 2025-2026

Page 37 Department of CSIT

plt.title('Histogram for Robbery')

plt.hist(crime.Robbery);

plt.bar(crime_bar.index,crime_bar.Robbery);

sns.barplot('Robbery','Year',data=crime);

BIG DATA ANALYTICS LAB 2025-2026

Page 38 Department of CSIT

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

data=pd.read_csv('crime.csv')

x=data.Population

y=data.CarTheft

plt.scatter(x,y)

plt.xlabel('Population')

plt.ylabel('CarTheft')

plt.title('Population Vs CarTheft')

plt.show();

BIG DATA ANALYTICS LAB 2025-2026

Page 39 Department of CSIT

OUTPUT:

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 40 Department of IT

Record Notes

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 41 Department of IT

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 42 Department of IT

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 43

EXPERIMENT: 4
Implement no sql Database Operations: Crud Operations, Arrays Using MONGODB.

PROGRAM:

AIM: To Create a operations for crud and arrays without no sql datasbase.

TITLE: Basic CRUD operations in MongoDB.

CRUD operations refer to the basic Insert, Read, Update and Delete operations.

Inserting a document into a collection (Create)

➢ The command db.collection.insert()will perform an insert operation into a collection of a

document. ➢ Let us insert a document to a student collection. You must be connected to a database

for doing any insert. It is done as follows:

db.student.insert({

regNo: "3014",

name: "Test Student",

course: { courseName: "MCA", duration: "3 Years" },

address: {

city: "Bangalore",

state: "KA",

country: "India" } })

An entry has been made into the collection called student.

Querying a document from a collection (Read)

To retrieve (Select) the inserted document, run the below command. The find() command will

retrieve all the documents of the given collection.

db.collection_name.find()

➢ If a record is to be retrieved based on some criteria, the find() method should be called passing

parameters, then the record will be retrieved based on the attributes specified.

db.collection_name.find({"fieldname":"value"})

➢ For Example: Let us retrieve the record from the student collection where the attribute regNo is
3014and the query for the same is as shown below:

db.students.find({"regNo":"3014"})

Updating a document in a collection (Update) In order to update specific field values of a collection

in MongoDB, run the below query. db.collection_name.update()

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 44

➢ update() method specified above will take the fieldname and the new value as argument to update
a document.

➢ Let us update the attribute name of the collection student for the document with regNo 3014.

db.student.update({

"regNo": "3014"

},

$set:

{

"name": "Viraj"

})

Removing an entry from the collection (Delete)

➢ Let us now look into the deleting an entry from a collection. In order to delete an entry from a

collection, run the command as shown below : db.collection_name.remove({"fieldname":"value"})

➢ For Example : db.student.remove({"regNo":"3014"})

Note that after running the remove() method, the entry has been deleted from the student collection.

Working with Arrays in MongoDB

1. Introduction

In a MongoDB database, data is stored in collections and a collection has documents. A document

has fields and values, like in a JSON. The field types include scalar types (string, number, date, etc.)

and composite types (arrays and objects). In this article we will look at an example of using the array

field type.

The example is an application where users create blog posts and write comments for the posts. The

relationship between the posts and comments is One-to-Many; i.e., a post can have many comments.

We will consider a collection of blog posts with their comments. That is a post document will also

store the related comments. In MongoDB's document model, a 1:N relationship data can be stored

within a collection; this is a de-normalized form of data. The related data is stored together and can

be accessed (and updated) together. The comments are stored as an array; an array of comment

objects.

A sample document of the blog posts with comments:

{

"_id" : ObjectId("5ec55af811ac5e2e2aafb2b9"),

"name" : "Working with Arrays",

"user" : "Database Rebel",

"desc" : "Maintaining an array of objects in a document",

"content" : "some content ...",

"created" : ISODate("2020-05-20T16:28:55.468Z"),

"updated" : ISODate("2020-05-20T16:28:55.468Z"),

"tags" : ["mongodb", "arrays"],

"comments" : [

{

"user" : "DB Learner",
"content" : "Nice post.",

"updated" : ISODate("2020-05-20T16:35:57.461Z")

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 45

}

]

}

In an application, a blog post is created, comments are added, queried, modified or deleted by users.

In the example, we will write code to create a blog post document, and do some CRUD operations

with comments for the post.

2. Create and Query a Document

Let's create a blog post document. We will use a database called as blogs and a collection called as

posts. The code is written in mongoshell (an interactive JavaScript interface to MongoDB). Mongo

shell is started from the command line and is connected to the MongoDB server. From the shell:

use blogs

NEW_POST =

{

name: "Working with Arrays",

user: "Database Rebel",

desc: "Maintaining an array of objects in a document",

content: "some content...",

created: ISODate(),

updated: ISODate(),

tags: ["mongodb", "arrays"]

}

db.posts.insertOne(NEW_POST)

Returns a result { "acknowledged" : true, "insertedId" : ObjectId("5ec55af811ac5e2e2aafb2b9") }

indicating that a new document is created. This is a common acknowledgement when you perform a

write operation. When a document is inserted into a collection for the first time, the collection gets

created (if it doesn't exist already). The insertOne method inserts a document into the collection.

Now, let's query the collection :

db.posts.findOne()

{

"_id" : ObjectId("5ec55af811ac5e2e2aafb2b9"),

"name" : "Working with Arrays",

"user" : "Database Rebel",

"desc" : "Maintaining an array of objects in a document",

"content" : "some content...",

"created" : ISODate("2020-05-20T16:28:55.468Z"),

"updated" : ISODate("2020-05-20T16:28:55.468Z"),

"tags" : [

"mongodb",

"arrays"

]

}

The findOne method retrieves one matching document from the collection. Note the scalar fields

name (string type) and created (date type), and the array field tags. In the newly inserted document

there are no comments, yet.

3. Add an Array Element

Let's add a comment for this post, by a user "DB Learner":

NEW_COMMENT = {

user: "DB Learner",

text: "Nice post, can I know more about the arrays in MongoDB?",

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 46

updated: ISODate()

}

db.posts.updateOne(

{ _id : ObjectId("5ec55af811ac5e2e2aafb2b9") },

{ $push: { comments: NEW_COMMENT } }

)

Returns: { "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : 1 }

The updateOne method updates a document's fields based upon the specified condition. $push is an

array update operator which adds an element to an array. If the array doesn't exist, it creates an array

field and then adds the element.

Let's query the collection and confirm the new comment visually, using the findOne method:

{

"_id" : ObjectId("5ec55af811ac5e2e2aafb2b9"),

"name" : "Working with Arrays",

...

"comments" : [

{

"user" : "DB Learner",
"text" : "Nice post, can I know more about the arrays in MongoDB?",

"updated" : ISODate("2020-05-20T16:35:57.461Z")

}

]

}

Note the comments array field has comment objects as elements. Let's add one more comment using

the same $push update operator. This new comment (by user "Database Rebel") is appended to the

comments array:

"comments" : [

{

"user" : "DB Learner",
"text" : "Nice post, can I know more about the arrays in MongoDB?",

"updated" : ISODate("2020-05-20T16:35:57.461Z")

},

{

"user" : "Database Rebel",

"text" : "Thank you, please look for updates",

"updated" : ISODate("2020-05-20T16:48:25.506Z")

}

]

4. Update an Array Element

Let's update the comment posted by "Database Rebel" with modified text field :

NEW_CONTENT = "Thank you, please look for updates - updated the post".

db.posts.updateOne(

{ _id : ObjectId("5ec55af811ac5e2e2aafb2b9"), "comments.user": "Database Rebel" },

{ $set: { "comments.$.text": NEW_CONTENT } }

)

The $set update operator is used to change a field's value. The positional $ operator identifies an

element in an array to update without explicitly specifying the position of the element in the array.

The first matching element is updated. The updated comment object:

"comments" : [

{

"user" : "Database Rebel",

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 47

"text" : "Thank you, please look for updates - updated",

"updated" : ISODate("2020-05-20T16:48:25.506Z")

}

]

5. Delete an Array Element

The user changed his mind and wanted to delete the comment, and then add a new one.

db.posts.updateOne(

{ _id" : ObjectId("5ec55af811ac5e2e2aafb2b9") },

{ $pull: { comments: { user: "Database Rebel" } } }

)

The $pull update operator removes elements from an array which match the specified condition - in

this case { comments: { user: "Database Rebel" } }.

A new comment is added to the array after the above delete operation, with the following text:

"Thank you for your comment. I have updated the post with CRUD operations on an array field".

6. Add a New Field to all Objects in the Array

Let's add a new field likes for all the comments in the array.

db.posts.updateOne(

{ "_id : ObjectId("5ec55af811ac5e2e2aafb2b9") },

{ $set: { "comments.$[].likes": 0 } }

)

The all positional operator $[] specifies that the update operator $set should modify all elements in

the specified array field. After the update, all comment objects have the likes field, for example:

{

"user" : "DB Learner",

"text" : "Nice post, can I know more about the arrays in MongoDB?",

"updated" : ISODate("2020-05-20T16:35:57.461Z"),

"likes" : 0

}

7. Update a Specific Array Element Based on a Condition

First, let's add another new comment using the $push update operator:

NEW_COMMENT = {

user: "DB Learner",

text: "Thanks for the updates!",

updated: ISODate()

}

Note the likes field is missing in the input document. We will update this particular comment in the

comments array with the condition that the likes field is missing.

db.posts.updateOne(

{ "_id" : ObjectId("5ec55af811ac5e2e2aafb2b9") },

{ $inc: { "comments.$[ele].likes": 1 } },

{ arrayFilters: [{ "ele.user": "DB Learner", "ele.likes": { $exists: false } }] }

)

The likes field is updated using the $inc update operator (this increments a field's value, or if not

exists adds the field and then increments). The filtered positional operator $[<identifier>] identifies

the array elements that match the arrayFilters conditions for an update operation.

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 48

OUTPUT:

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 49 Department of IT

Record Notes

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 50 Department of IT

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 51 Department of IT

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 52

EXPERIMENT: 5

Implement Functions: Count – Sort – Limit – Skip – Aggregate Using MONGODB.

PROGRAM:

AIM: To create function operations for sort, limit, skip and aggregate.

1. COUNT

How do you get the number of Debit and Credit transactions? One way to

do it is by using count() function as below

> db.transactions.count({cr_dr : "D"});

or

> db.transactions.find({cr_dr : "D"}).length();

But what if you do not know the possible values of cr_dr upfront. Here

Aggregation framework comes to play. See the below Aggregate query.

> db.transactions.aggregate(

[

{

$group : {

_id : '$cr_dr', // group by type of transaction

// Add 1 for each document to the count for this type of

transaction

}

}

]

);

count : {$sum : 1}

And the result is

{

"_id" : "C",

"count" : 3

}

{

"_id" : "D",

"count" : 5

}

2. SORT

Definition

$sort

Sorts all input documents and returns them to the pipeline in sorted order.

The

$sort

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 53

stage has the following prototype form:

{ $sort: { <field1>: <sort order>, <field2>: <sort order> ... } }

$sort

takes a document that specifies the field(s) to sort by and the respective

sort order. <sort order> can have one of the following values:

Value

Description

1

Sort ascending.

-1

Sort descending.

{ $meta: "textScore" }

Sort by the computed textScore metadata in descending order. See

Text Score Metadata Sort

for an example.

If sorting on multiple fields, sort order is evaluated from left to right. For

example, in the form above, documents are first sorted by <field1>. Then

documents with the same <field1> values are further sorted by <field2>.

Behavior

Limits

You can sort on a maximum of 32 keys.

Sort Consistency

MongoDB does not store documents in a collection in a particular order.

When sorting on a field which contains duplicate values, documents

containing those values may be returned in any order.

If consistent sort order is desired, include at least one field in your sort

that contains unique values. The easiest way to guarantee this is to

include the _id field in your sort query.

Consider the following restaurant collection:

db.restaurants.insertMany([

{ "_id" : 1, "name" : "Central Park Cafe", "borough" : "Manhattan"},

{ "_id" : 2, "name" : "Rock A Feller Bar and Grill", "borough" :

"Queens"},

{ "_id" : 3, "name" : "Empire State Pub", "borough" : "Brooklyn"},

{ "_id" : 4, "name" : "Stan's Pizzaria", "borough" : "Manhattan"},

{ "_id" : 5, "name" : "Jane's Deli", "borough" : "Brooklyn"},

])

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 54

The following command uses the

$sort

stage to sort on the borough field:

db.restaurants.aggregate(

[

{ $sort : { borough : 1 } }

]

)

In this example, sort order may be inconsistent, since the borough field

contains duplicate values for both Manhattan and Brooklyn. Documents

are returned in alphabetical order by borough, but the order of those

documents with duplicate values for borough might not the be the same

across multiple executions of the same sort. For example, here are the

results from two different executions of the above command:

{ "_id" : 3, "name" : "Empire State Pub", "borough" : "Brooklyn" }

{ "_id" : 5, "name" : "Jane's Deli", "borough" : "Brooklyn" }

{ "_id" : 1, "name" : "Central Park Cafe", "borough" : "Manhattan" }

{ "_id" : 4, "name" : "Stan's Pizzaria", "borough" : "Manhattan" }

{ "_id" : 2, "name" : "Rock A Feller Bar and Grill", "borough" : "Queens"

}

{ "_id" : 5, "name" : "Jane's Deli", "borough" : "Brooklyn" }

{ "_id" : 3, "name" : "Empire State Pub", "borough" : "Brooklyn" }

{ "_id" : 4, "name" : "Stan's Pizzaria", "borough" : "Manhattan" }

{ "_id" : 1, "name" : "Central Park Cafe", "borough" : "Manhattan" }

{ "_id" : 2, "name" : "Rock A Feller Bar and Grill", "borough" : "Queens"

}

While the values for borough are still sorted in alphabetical order, the

order of the documents containing duplicate values for borough (i.e.

Manhattan and Brooklyn) is not the same.

To achieve a consistent sort, add a field which contains exclusively

unique values to the sort. The following command uses the

$sort

stage to sort on both the borough field and the _id field:

db.restaurants.aggregate(

[

{ $sort : { borough : 1, _id: 1 } }

]

)

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 55

Since the _id field is always guaranteed to contain exclusively unique

values, the returned sort order will always be the same across multiple

executions of the same sort.

Examples

Ascending/Descending Sort

For the field or fields to sort by, set the sort order to 1 or -1 to specify an

ascending or descending sort respectively, as in the following example:

db.users.aggregate(

[

{ $sort : { age : -1, posts: 1 } }

]

)

This operation sorts the documents in the users collection, in descending

order according by the age field and then in ascending order according to

the value in the posts field.
3. LIMIT

$sort

Sorts all input documents and returns them to the pipeline in sorted order.

The $sort stage has the following prototype form:

{ $sort: { <field1>: <sort order>, <field2>: <sort order> ... } }

$sort takes a document that specifies the field(s) to sort by and the

respective sort order. <sort order> can have one of the following values:

Value Description

1 Sort ascending.

-1 Sort descending.

{ $meta:

"textScore" }

Sort by the computed textScore metadata in

descending order. See Text Score Metadata Sort for

an example.

If sorting on multiple fields, sort order is evaluated from left to right. For

example, in the form above, documents are first sorted by <field1>. Then

documents with the same <field1> values are further sorted by <field2>.

Behavior

Limits

You can sort on a maximum of 32 keys.

Sort Consistency

MongoDB does not store documents in a collection in a particular order.

When sorting on a field which contains duplicate values, documents

containing those values may be returned in any order.

If consistent sort order is desired, include at least one field in your sort

https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#mongodb-pipeline-pipe.-sort
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#mongodb-pipeline-pipe.-sort
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#std-label-sort-pipeline-metadata

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 56

that contains unique values. The easiest way to guarantee this is to

include the _id field in your sort query.

Consider the following restaurant collection:

db.restaurants.insertMany([

{ "_id" : 1, "name" : "Central Park Cafe", "borough" : "Manhattan"},

{ "_id" : 2, "name" : "Rock A Feller Bar and Grill", "borough" : "Queens"},

{ "_id" : 3, "name" : "Empire State Pub", "borough" : "Brooklyn"},

{ "_id" : 4, "name" : "Stan's Pizzaria", "borough" : "Manhattan"},

{ "_id" : 5, "name" : "Jane's Deli", "borough" : "Brooklyn"},

])

The following command uses the $sort stage to sort on the borough field:

db.restaurants.aggregate(

[

{ $sort : { borough : 1 } }

]

)

In this example, sort order may be inconsistent, since the borough field

contains duplicate values for both Manhattan and Brooklyn. Documents

are returned in alphabetical order by borough, but the order of those

documents with duplicate values for borough might not the be the same

across multiple executions of the same sort. For example, here are the

results from two different executions of the above command:

{ "_id" : 3, "name" : "Empire State Pub", "borough" : "Brooklyn" }

{ "_id" : 5, "name" : "Jane's Deli", "borough" : "Brooklyn" }

{ "_id" : 1, "name" : "Central Park Cafe", "borough" : "Manhattan" }

{ "_id" : 4, "name" : "Stan's Pizzaria", "borough" : "Manhattan" }

{ "_id" : 2, "name" : "Rock A Feller Bar and Grill", "borough" : "Queens" }

{ "_id" : 5, "name" : "Jane's Deli", "borough" : "Brooklyn" }

{ "_id" : 3, "name" : "Empire State Pub", "borough" : "Brooklyn" }

{ "_id" : 4, "name" : "Stan's Pizzaria", "borough" : "Manhattan" }

{ "_id" : 1, "name" : "Central Park Cafe", "borough" : "Manhattan" }

{ "_id" : 2, "name" : "Rock A Feller Bar and Grill", "borough" : "Queens" }

While the values for borough are still sorted in alphabetical order, the

order of the documents containing duplicate values

for borough (i.e. Manhattan and Brooklyn) is not the same.

To achieve a consistent sort, add a field which contains exclusively

unique values to the sort. The following command uses the $sort stage to

sort on both the borough field and the _id field:

db.restaurants.aggregate(

[

{ $sort : { borough : 1, _id: 1 } }

]

)

Since the _id field is always guaranteed to contain exclusively unique

https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#mongodb-pipeline-pipe.-sort
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#mongodb-pipeline-pipe.-sort

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 57

values, the returned sort order will always be the same across multiple

executions of the same sort.

Examples

Ascending/Descending Sort

For the field or fields to sort by, set the sort order to 1 or -1 to specify an

ascending or descending sort respectively, as in the following example:

db.users.aggregate(

[

{ $sort : { age : -1, posts: 1 } }

]

)
4. SKIP

$skip

Skips over the specified number of documents that pass into the stage and

passes the remaining documents to the next stage in the pipeline.

The

$skip

stage has the following prototype form:

{ $skip: <positive 64-bit integer> }

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 58

OUTPUT:

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 59

Record Notes

Signature of the Faculty

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Department of IT Page 60

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Department of IT Page 61

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 62

EXPERIMENT: 6

Implement Word Count/ Frequency Programs Using Map Reduce.

PROGRAM:

Hadoop Streaming API for helping us passing data between our Map and Reduce code

from collections import defaultdict

Sample input data

data = [

"Hello world",

"MapReduce is a programming model",

"Hello MapReduce",

"MapReduce example"

]

Initialize a dictionary to hold word counts

word_counts = defaultdict(int)

Map Function

def map_function(data):

for line in data:

words = line.split()

for word in words:

yield (word.lower(), 1)

Reduce Function

def reduce_function(mapped_data):

for word, count in mapped_data:

word_counts[word] += count

Map phase

mapped_data = list(map_function(data))

Shuffle and Sort (usually handled by the MapReduce framework)

Reduce phase

reduce_function(mapped_data)

Output the word counts

for word, count in word_counts.items():

print(f"{word}: {count}")

OUTPUT:

AIM: To count a given number using map reduce functions.

http://hadoop.apache.org/docs/r1.1.2/streaming.html#Hadoop%2BStreaming

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Department of IT Page 63

Record Notes

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Department of IT Page 64

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Department of IT Page 65

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 66

EXPERIMENT: 7

Implement a MapReduce Program that process a dataset.
AIM:

To create process dataset using map reduce functions.

PROGRAM:

import csv

import pickle

Read data from data.csv and perform mapping

mapped_data = []

with open('crime.csv', 'r') as csvfile:

reader = csv.reader(csvfile)

for row in reader:

for word in row: # Split each line into words

mapped_data.append((word, 1)) # Emit (word, 1) for each word

Store the mapped data in shuffled.pkl

with open('shuffled.pkl', 'wb') as output_file:

pickle.dump(mapped_data, output_file)

import pickle

from collections import defaultdict

Read the mapped data from shuffled.pkl

with open('shuffled.pkl', 'rb') as input_file:

mapped_data = pickle.load(input_file)

Perform reducing (word count) operation

word_counts = defaultdict(int)

for word, count in mapped_data:

word_counts[word] += count

Print the word counts

for word, count in word_counts.items():

print(f"{word}: {count}")

OUTPUT:

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 67

Record Notes

Signature of the Faculty

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 68 Department of IT

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 69 Department of IT

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 70

EXPERIMENT: 8

Implement Clustering Techniques using SPARK.

AIM: To create a clustering using SPARK.

PROGRAM:

from pyspark.sql import SparkSession

from pyspark.ml.clustering import KMeans

from pyspark.ml.feature import VectorAssembler

from pyspark.ml.evaluation import ClusteringEvaluator

Start Spark session

spark = SparkSession.builder.appName("IrisKMeans").getOrCreate()

Load the dataset

data = spark.read.csv("iris.csv", header=True, inferSchema=True)

Print schema to confirm structure

data.printSchema()

data.show(5)

Prepare features by excluding the label column

feature_cols = data.columns

if "label" in feature_cols:

feature_cols.remove("label")

elif "species" in feature_cols: # Common case for Iris

feature_cols.remove("species")

Assemble features

assembler = VectorAssembler(inputCols=feature_cols, outputCol="features")

assembled_data = assembler.transform(data)

Train KMeans

kmeans = KMeans(k=3, seed=1)

model = kmeans.fit(assembled_data)

Predictions

predictions = model.transform(assembled_data)

predictions.select("prediction", "features").show(5)

Evaluate with Silhouette Score

evaluator = ClusteringEvaluator()

silhouette = evaluator.evaluate(predictions)

print(f"Silhouette Score = {silhouette}")

Optional: Show cluster centers

centers = model.clusterCenters()

print("Cluster Centers:")

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 71

for i, center in enumerate(centers):

print(f"Cluster {i}: {center}")

OUTPUT:

2025-2026 BIG DATA ANALYTICS LAB

Department of IT Page 72

Record Notes

Signature of the Faculty

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 73 Department of IT

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 74 Department of IT

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 75 Department of IT

EXPERIMENT : 9
Implement an application that stores Big Data in MONGODB / PIG Using Hadoop /

R.

AIM: To design a application to stores data in mongdob using hadoop.

PROGRAM:

pip install pymongo

import pymongo

Connect to MongoDB

client = pymongo.MongoClient("mongodb://localhost:27017/")

db = client["bigdata_db"]

collection = db["bigdata_collection"]

Simulated big data

big_data = [{"_id": i, "data": f"Data point {i}"} for i in range(1, 1000000)]

Insert big data into MongoDB

collection.insert_many(big_data)

Query data from MongoDB

result = collection.find_one({"_id": 1})

print("Retrieved data from MongoDB:")

print(result)

Close MongoDB connection

client.close()

Record Notes:

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 76 Department of IT

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 77 Department of IT

2025-2026 BIG DATA ANALYTICS LAB

Signature of the Faculty

Page 78 Department of IT

	Prepared By:
	DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY
	VISION
	MISSION
	PEO1 – ANALYTICAL SKILLS

	PEO2 – TECHNICAL SKILLS
	PEO3 – SOFT SKILLS
	PEO4 – PROFESSIONAL ETHICS
	Engineering Graduates should possess the following:
	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY
	GENERAL LABORATORY INSTRUCTIONS

	MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
	(R22A0590) BIG DATA ANALYTICS LAB
	List of Experiments
	Course Outcomes:

	BIG DATA ANALYTICS LAB
	EXPERIMENT: 1
	Install, configure and run python, numpy and pandas.
	PROGRAM:
	How to Install Anaconda on Windows?
	Download and install Anaconda:

	NUMPY
	NumPy is usually imported under the np alias.
	Now the NumPy package can be referred to as np instead of numpy.
	Checking NumPy Version
	Create a NumPy ndarray Object
	type(): This built-in Python function tells us the type of the object passed to it. Like in above code it shows that arr is numpy.ndarray type.
	Use a tuple to create a NumPy array:
	Dimensions in Arrays
	nested array: are arrays that have arrays as their elements. 0-D Arrays
	1-D Arrays
	2-D Arrays
	3-D arrays
	Check Number of Dimensions?
	NumPy Array Indexing Access Array Elements
	Access 2-D Arrays

	OUTPUT:
	Record Notes

	EXPERIMENT: 2
	Install, Configure and Run Hadoop and HDFS
	HADOOP INSTALATION IN WINDOWS
	1. Prerequisites
	2. Unzip and Install Hadoop
	3. Setting Up Environment Variables
	3.1 Setting JAVA_HOME
	3.2 Setting HADOOP_HOME
	3.3 Setting Path Variable
	3.4 Verify the Paths
	4. Editing Hadoop files
	4.1 Creating Folders
	4.2 Editing Configuration Files
	4.2.1 Editing core-site.xml
	4.2.2 Editing hdfs-site.xml
	4.2.3 Editing mapred-site.xml
	4.2.4 Editing yarn-site.xml
	4.2.5 Verifying hadoop-env.cmd
	4.3 Replacing bin
	5. Testing Setup
	5.1 Formatting Namenode
	5.2 Launching Hadoop
	6. Running Hadoop (Verifying Web UIs)
	6.2 Resourcemanger
	6.3 Datanode

	OUTPUT: (1)
	Record Notes

	EXPERIMENT: 3
	Visualize Data Using Basic Plotting Techniques In Python.

	OUTPUT: (2)
	EXPERIMENT: 4
	Implement no sql Database Operations: Crud Operations, Arrays Using MONGODB. PROGRAM:
	TITLE: Basic CRUD operations in MongoDB.
	Working with Arrays in MongoDB
	2. Create and Query a Document
	3. Add an Array Element
	4. Update an Array Element
	5. Delete an Array Element
	6. Add a New Field to all Objects in the Array
	7. Update a Specific Array Element Based on a Condition

	OUTPUT: (3)
	EXPERIMENT: 5
	Implement Functions: Count – Sort – Limit – Skip – Aggregate Using MONGODB. PROGRAM:

	OUTPUT: (4)
	Record Notes

	EXPERIMENT: 6
	PROGRAM:

	OUTPUT: (5)
	EXPERIMENT: 7
	Implement a MapReduce Program that process a dataset.
	PROGRAM:

	OUTPUT: (6)
	Record Notes

	EXPERIMENT: 8
	Implement Clustering Techniques using SPARK.
	PROGRAM:

	OUTPUT: (7)
	Record Notes

	EXPERIMENT : 9
	Implement an application that stores Big Data in MONGODB / PIG Using Hadoop / R.
	PROGRAM:

